Photodissociation Dynamics of the Cyclohexyl Radical from the 3p Rydberg State at 248 nm

17 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The photodissociation of jet-cooled cyclohexyl was studied by exciting the radicals to their 3p Rydberg state using 248 nm laser light and detecting photoproducts by photofragment translational spectroscopy. Both H-atom loss and dissociation to heavy fragment pairs are observed. The H-atom loss channel exhibits a two-component translational energy distribution. The fast photoproduct component is attributed to impulsive cleavage directly from an excited state, likely the Rydberg 3s state, forming cyclohexene. The slow component is due to statistical decomposition of hot cyclohexyl radicals that internally convert to the ground electronic state prior to H-atom loss. The fast and slow components are present in a ~0.7:1 ratio, similar to findings in other alkyl radicals. Internal conversion to the ground state also leads to ring-opening followed by dissociation to 1-buten-4-yl + ethene in comparable yield to H-loss, with the C4H7 fragment containing enough internal energy to dissociate further to butadiene via H-atom loss. A very minor ground-state C5H8 + CH3 channel is observed, attributed predominantly to 1,3-pentadiene formation. The ground-state branching ratios agree well with RRKM calculations, which also predict C4H6 + C2H5 and C3H6 + C3H5 channels with similar yield to C5H8 + CH3. If these channels were active it was at levels too low to be observed.

Keywords

mass spectrometry
ultraviolet absorption
pyrolysis
alkyl radical
unimolecular decomposition

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.