Kinetic Assessment of the Dry Reforming of Methane over a Solid Solution Ni–La Oxide Catalyst

16 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The dry reforming of methane is a promising technology for the abatement of CH4 and CO2. Solid solution Ni–La oxide catalysts are characterized by their long–term stability (100h) when tested at full conversion. The kinetics of dry reforming over this type of catalysts has been studied using both power law and Langmuir–Hinshelwood based approaches. However, these studies typically deal with fitting the net CH4 rate hence disregarding competing and parallel surface processes and the different possible configurations of the active surface. In this work, we synthesized a solid solution Ni–La oxide catalyst and tested six Langmuir–Hinshelwood mechanisms considering both single and dual active sites for assessing the kinetics of dry reforming and the competing reverse water gas shift reaction and investigated the performance of the derived kinetic models. In doing this, it was found that: (1) all the net rates were better fitted by a single–site model that considered that the first C–H bond cleavage in methane occurred over a metal−oxygen pair site; (2) this model predicted the existence of a nearly saturated nickel surface with chemisorbed oxygen adatoms derived from the dissociation of CO2; (3) the dissociation of CO2 can either be an inhibitory or an irrelevant step, and it can also modify the apparent activation energy for CH4 activation. These findings contribute to a better understanding of the dry reforming reaction's kinetics and provide a robust kinetic model for the design and scale–up of the process.


Solid solution Ni–La oxide catalyst
Dry reforming of methane
Kinetic modelling
Ni-O active site

Supplementary materials

Supplementary Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.