Reducing hERG Toxicity Using Reliable hERG Classification Model and Fragment Grow Model

30 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Drug-induced cardiotoxicity has become one of the major reasons leading to drug withdrawal in past decades, which is closely related to the blockade of human Ether-a-go-go-related gene (hERG) potassium channel. Developing reliable hERG predicting model and optimizing model can greatly reduce the risk faced in drug discovery. In this study, we constructed eight hERG classification models, the best of which shows desirable generalization ability on low-similarity clinical compounds, as well as advantages in perceiving activity gap caused by small structural changes. Furthermore, we developed a hERG optimizer based on fragment grow strategy. Results reveal that after reinforcement learning, our model can provide reasonable optimizing direction to reduce hERG toxicity, especially when hERG risk is corresponding to lipophilicity, basicity and pi-pi interactions. We also prove its usage in helping chemists quickly pick out core fragments and fix on the region to be optimized. Overall, we demonstrate our model as a promising tool for medicinal chemists in hERG optimization attempts.

Keywords

hERG optimization
fragment grow

Supplementary materials

Title
Description
Actions
Title
supporting information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.