Pathway Complexity in Supramolecular Porphyrin Self-Assembly at an Immiscible Liquid|Liquid Interface

08 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Nanostructures that are inaccessible through spontaneous thermodynamic processes may be formed by supramolecular self-assembly under kinetic control. In the past decade, the dynamics of pathway complexity in self-assembly have been elucidated through kinetic models based on aggregate growth by sequential monomer association and dissociation. Immiscible liquid|liquid interfaces are an attractive platform to develop well-ordered self-assembled nanostructures, unattainable in bulk solution, due to the templating interaction of the interface with adsorbed molecules. Here, we report time-resolved in situ UV/vis spectroscopic observations of the self-assembly of zinc(II) meso-tetrakis(4-carboxyphenyl)porphyrin (ZnTPPc) at an immiscible aqueous|organic interface. We show that the kinetically favoured metastable J-type nanostructures form quickly, but then transform into stable thermodynamically favoured H-type nanostructures. Numerical modelling revealed two parallel and competing cooperative pathways leading to the different porphyrin nanostructures. These insights demonstrate that pathway complexity is not unique to self-assembly processes in bulk solution, and equally valid for interfacial self-assembly. Subsequently, the interfacial electrostatic environment was tuned using a kosmotropic anion (citrate) in order to control the influence the pathway selection. At high concentrations, interfacial nanostructure formation was forced completely down the kinetically favoured pathway and only J-type nanostructures were obtained. Furthermore, we found by atomic force microscopy (AFM) and scanning electron microscopy (SEM) that the J- and H-type nanostructures obtained at low and high citric acid concentrations, respectively, are morphologically distinct, which illustrates the pathway-dependent material properties.


Supramolecular self-assembly
Porphyrin nanostructures
Pathway Complexity
Liquid-liquid interfaces
Isodesmic supermolecular self-assembly
Cooperative Supramolecular Self-Assembly

Supplementary materials

Pathway complexity Supporting Information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.