Physical Chemistry

Spatial Separation of Plasmonic Hot Electron Generation and a Hydrodehalogenation Reaction Center Using a DNA Wire

Authors

Abstract

Using hot charge carriers far from a plasmonic nanoparticle surface is very attractive for many applications in catalysis and nanomedicine, and will lead to a better understanding of plasmon-induced processes, such as hot charge carrier or heat driven chemical reactions. Herein we show that DNA is able to transfer hot electrons generated by a silver nanoparticle over several nanometers to drive a chemical reaction in a molecule non-adsorbed on the surface. For this we use 8-bromo-adenosine introduced in different positions within a double stranded DNA oligonucleotide. The DNA is also used to assemble the nanoparticles into superlattices enabling the use of surface enhanced Raman scattering to track the decomposition reaction. To prove the DNA mediated transfer, the probe molecule was insulated from the charge carriers source, which hindered the reaction. The results indicate that DNA can provide an attractive platform to study the transfer of hot electrons, leading to the future development of more advanced plasmonic catalysts.

Content

Thumbnail image of Paper_DNACrystalsReaction_SKJr_210223.pdf

Supplementary material

Thumbnail image of Supporting Information_210223.docx
Supporting Information 210223