Beam Search Sampling for Molecular Design and Intrinsic Prioritization with Machine Intelligence

04 March 2021, Version 1

Abstract

Chemical language models enable de novo drug design without the requirement for explicit molecular construction rules. While such models have been applied to generate novel compounds with desired bioactivity, the actual prioritization and selection of the most promising computational designs remains challenging. In this work, we leveraged the probabilities learnt by chemical language models with the beam search algorithm as a model-intrinsic technique for automated molecule design and scoring. Prospective application of this method yielded three novel inverse agonists of retinoic acid receptor-related orphan receptors (RORs). Each design was synthesizable in three reaction steps and presented low-micromolar to nanomolar potency towards RORg. This model-intrinsic sampling technique eliminates the strict need for external compound scoring functions, thereby further extending the applicability of generative artificial intelligence to data-driven drug discovery.

Content

Supplementary materials

Supplementary Information

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.