Peering into Buried Interfaces with X-Rays and Electrons to Unveil MgCO3 Formation During CO2 Capture in Molten Salt Promoted MgO

01 March 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The addition of molten alkali metal salts drastically accelerates the kinetics of CO2 capture by MgO through the formation of MgCO3. However, the growth mechanism, the nature of MgCO3 formation and the exact role of the molten alkali metal salts on the CO2 capture process remains elusive, holding back the development of more effective MgO-based CO2 sorbents. Here, we unveil the growth mechanism of MgCO3 under practically relevant conditions using a well-defined, yet representative, model system that is a MgO(100) single crystal coated with NaNO3. The model system is interrogated by in situ X-ray reflectometry coupled with grazing incidence X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. When bare MgO(100) is exposed to a flow of CO2, a non-crystalline surface carbonate layer of ca. 7 Å thickness forms. In contrast, when MgO(100) is coated with NaNO3 MgCO3 crystals nucleate and growth. These crystals have a preferential orientation with respect to the MgO(100) substrate, and form at the interface between MgO(100) and the molten NaNO3. MgCO3 grows epitaxially with respect to MgO(100) and the lattice mismatch between MgCO3 and MgO is relaxed through lattice misfit dislocations. Pyramid shaped pits on the surface of MgO, in the proximity and below the MgCO3 crystals, point to the etching of surface MgO, providing dissolved [Mg2+…O2–] ionic pairs for MgCO3 growth. Our studies highlight the importance of combining X-rays and electron microscopy techniques to provide atomic to micrometer scale insight into the changes occurring at complex interfaces under reactive conditions.


CO2 capture and storage (CCS)
InterfacesComposite materials
X-ray diffraction experiments
Electron Microscopy
X-ray reflectometry
CO2 capture technology


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.