Anion Specific Effects Drive the Formation of Li-Salt Based Aqueous Biphasic Systems

26 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Aqueous biphasic systems (ABS) can form when mixing water with two compounds such as polymers, ionic-liquids or simple salts. While this phenomenon has been known for decades and found applications in various fields such as biology, recycling or even more recently electrochemistry, the physics behind the formation of ABSs remains ill-understood. It was recently demonstrated that ABSs can be composed of two salts sharing the same cation (Li+) but different anions (sulfonamide and halide). Interestingly, their formation could not be explained by the position of the anions within the chaotropic/kosmotropic series and was rather proposed to originate from an anion size mismatch, albeit the size for these anions was never measured yet owing to the lack of a proper experimental methodology. Here, we combine experimental techniques and molecular simulations to assess the specific effects (size, shape, hydrophobic/hydrophilic character) of a series of anions and correlate them with the formation of ABSs. We demonstrate that while the anion size mismatch is a prerequisite for the formation of Li-salts based ABSs, their shape can also play an important role, providing general guidelines for forming new ABSs with potential future applications.


aqueous biphasic systems
superconcentrated electrolytes
phase separation

Supplementary materials

abs ion size SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.