Abstract
High resolution field cycling 31P NMR spin-lattice relaxometry, where the sample is excited at high field, shuttled in the magnet bore for low field relaxation, then shuttled back to high field for readout of the residual magnetization, provides data on phospholipid dynamics and structure. In the field range from 11.74 down to 0.003 T three dipolar nuclear magnetic relaxation dispersions (NMRDs) and one due to 31P chemical shift anisotropy contribute to R1 of phospholipids. Extraction of correlation times and maximum relaxation amplitudes for these NMRDs provides (1) lateral diffusion constants for different phospholipids in the same bilayer (illustrated with phospholipase C binding), (2) estimates of how additives alter the motion of the phospholipid about its long axis (looking at cholesterol effects), and (3) an average 31P – 1H angle with respect to the bilayer normal, which reveals that polar head group motion is not restricted on a µs timescale. Although this deals exclusively with phospholipids in small unilamellar vesicles, these same NMRDs can be measured for phospholipids in micelles and nanodiscs, making this technique useful for monitoring lipid behavior in a variety of structures.