Boosting Self-interaction of Molecular Vibrations under Ultra-strong Coupling Condition

22 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this letter, we investigated the modification of oscillator strength of an asymmetric stretching band of CS2 by strong coupling to an infrared cavity photon. This is achieved by placing liquid CS2 in a Fabry-Perot resonator and tune the cavity mode position to match with the molecular vibrational transition. Ultra-strong coupling improves the self-interaction of transition dipoles of asymmetric stretching band of CS2 that resulted in an increase of its own oscillator strength. We experimentally proved this by taking the area ratio of asymmetric stretching and combination band by selectively coupling the former one. A non-linear increase in the oscillator strength of the asymmetric stretching band is observed upon varying the coupling strength. This is explained by a quantum mechanical model that predicts quadratic behavior under ultra-strong coupling condition. These findings will set up a new paradigm for understanding chemical reaction modification by vacuum field coupling.

Keywords

Vibrational Spectroscopy
Light-matter strong coupling
Vibro-polaritonic state
Combination bands
Dipole-dipole interaction

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.