Blocking Lithium Dendrite Growth in Solid-State Batteries with an Ultrathin Amorphous Li-La-Zr-O Solid Electrolyte

08 February 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Lithium metal dendrites have become a roadblock in the realization of next-generation solid-state batteries with lithium metal as high-capacity anode. The presence of surface and bulk inhomogeneities with non-negligible electronic conductivity in crystalline electrolytes such as the lithium garnet Li7La3Zr2O12 (LLZO) facilitates the growth of lithium filaments, posing a critical safety risk. Here we explore the amorphous phase of LLZO (aLLZO) as a lithium dendrite shield owing to its grain-boundary-free microstructure, stability against metallic lithium, and high electronic insulation. We demonstrate that by tuning the lithium stoichiometry in sputtered aLLZO films, the ionic conductivity can be increased up to 10-7 S cm-1 while retaining an ultralow electronic conductivity of 10-14 S cm-1. In Li/aLLZO/Li symmetric cells, plating-stripping results in no degradation of the films and current densities up to 3.2 mA cm-2 can be applied with no signs of lithium penetration. The defect-free and conformal nature of the films enables microbatteries with an electrolyte thickness as low as 70 nm, which withstand charge-discharge at 0.2 mA cm-2 for over 500 cycles. Finally, we demonstrate that the application of aLLZO as a coating on crystalline LLZO lowers the interface resistance and significantly impedes the formation of lithium dendrites, increasing the critical current density of a symmetric cell up to 1.3 mA cm-2 at room temperature and without external pressure. The effectiveness of the amorphous Li-La-Zr-O as lithium dendrite blocking layer can accelerate the development of more powerful and safer solid-state batteries.

Keywords

solid-state batteries
solid electrolytes
Li7La3Zr2O12
lithium dendrite formation
thin film coating
amorphous LLZO
sputtering

Supplementary materials

Title
Description
Actions
Title
supplementary information aLLZO
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.