Binding Profile Assessment of N501Y: a More Infectious Mutation on the Receptor Binding Domain of SARS-CoV-2 Spike Protein

08 February 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019 and has accumulated nearly a hundred million reported infections thereafter. This highly transmissible and pathogenic coronavirus has caused a pandemic of acute respiratory disease, coronavirus disease 2019 (COVID-19), which has caught extensive attention and greatly changed people’s lifestyles all over the world. As an RNA virus, SARS-CoV-2 mutates rapidly as the virus replicates. The world health organization is now closely monitoring the emergence of a new variant, N501Y, on the spike protein. This N501Y variant is found to have higher transmission ability and infectivity, and is believed to be related to the rapid increase of COVID-19 cases in December 2020 in the UK. It was recently reported that the N501Y variants reduce neutralization sensitivity to convalescent sera and monoclonal antibodies. The Tyr mutation at 501 is located at the receptor binding domain (RBD) of the spike protein, the area that directly contacts human ACE2 (hACE2). It’s urgent to figure out the driving force of the new mutant’s enhanced infectivity. Thus, a computational aided binding profile prediction is made to investigate the binding affinity alteration and potential structural change of the N501Y mutant. The resulting structures of N501Y mutant from MD simulations could be used to develop drug inhibitors against hACE2/RBD binding.

Keywords

N501Y
SARS-CoV-2
spike protein
RBD
COVID-19
MD simulation
binding affinity
ACE2

Supplementary materials

Title
Description
Actions
Title
N501Y SI
Description
Actions
Title
N501Y reprensentative structure
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.