Imputation of Missing Gas Permeability Data for Polymer Membranes using Machine Learning

22 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Polymer-based membranes can be used for energy efficient gas separations. Successful exploitation of new materials requires accurate knowledge of the transport properties of all gases of interest. An open source database of such data is of significant benefit to the research community. The Membrane Society of Australasia (https://membrane-australasia.org/) hosts a database for experimentally measured and reported polymer gas permeabilities. However, the database is incomplete, limiting its potential use as a research tool. Here, missing values in the database were filled using machine learning (ML). The ML model was validated against gas permeability measurements that were not recorded in the database. Through imputing the missing data, it is possible to re-analyse historical polymers and look for potential “missed” candidates with promising gas selectivity. In addition, for systems with limited experimental data, ML using sparse features was performed, and we suggest that once the permeability of CO2 and/or O2 for a polymer has been measured, most other gas permeabilities and selectivities, including those for CO2/CH4 and CO2/N2, can be quantitatively estimated. This early insight into the gas permeability of a new system can be used at an initial stage of experimental measurements to rapidly identify polymer membranes worth further investigation.

Keywords

polymers of intrinsic microporosity (PIMs)
polyimides
database imputation
gas separation materialsmembranes

Supplementary materials

Title
Description
Actions
Title
Imputing PolymerMembranes SI
Description
Actions
Title
TOC
Description
Actions
Title
Imputed database BLR standard deviation
Description
Actions
Title
Imputed database BLR ERT
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.