Predicting the Potential Effect of E484K Mutation on the Binding of 28 Antibodies to the Spike Protein of SARS-CoV-2 by Molecular Dynamics Simulation and Free Energy Calculation

11 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Vaccines and antibody therapeutic are needed to fight the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has spread since 2020. Experimental studies have shown that the E484K variant may escape the neutralization of antibodies. To explore the potential impact of E484K mutation on the antibody binding affinity, we calculated the binding free energy of 28 antibodies to the wild type and K484 mutant of the spike protein of SARS-CoV-2. We found that 71% of the antibodies show lower binding affinity to the E484K mutant, indicating the highly possible immune escape risk of the mutated virus. Further analysis revealed that the other mutations, e.g. F490 and V483, are also likely to cause immune escape.

Keywords

Covid-19
immune escape
E484K
binding free energy

Supplementary materials

Title
Description
Actions
Title
manuscript-E484K-20210211 2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.