Immobilization of Nanobodies with Vapor-Deposited Polymer Encapsulation for Robust Biosensors

10 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

To produce next-generation, shelf-stable biosensors for point-of-care diagnostics, a combination of rugged biomolecular recognition elements, efficient encapsulants and innocuous deposition approaches are needed. Furthermore, to ensure that the sensitivity and specificity that is inherent to biological recognition elements is maintained in solid-state biosensing systems, site-specific immobilization chemistries must be invoked such that the function of the biomolecule remains unperturbed. In this work, we present a widely-applicable strategy to develop robust solid-state biosensors using emergent nanobody (Nb) recognition elements coupled with a vapor-deposited polymer encapsulation layer. As compared to conventional immunoglobulin G (IgG) antibodies, Nbs are smaller (12-15 kDa as opposed to ~150 kDa), have higher thermal stability and pH tolerance, boast greater ease of recombinant production, and are capable of binding antigens with high affinity and specificity. Photoinitiated chemical vapor deposition (piCVD) affords thin, protective polymer barrier layers over immobilized Nb arrays that allow for retention of Nb activity and specificity after both storage under ambient conditions and complete desiccation. Most importantly, we also demonstrate that vapor-deposited polymer encapsulation of nanobody arrays enables specific detection of target proteins in complex heterogenous samples, such as unpurified cell lysate, which is otherwise challenging to achieve with bare Nb arrays.

Keywords

nanobody
biosensor
vapor deposition
polymer encapsulation

Supplementary materials

Title
Description
Actions
Title
Nanobody draft v4 Final
Description
Actions
Title
Nanobody Project SI Final Kp
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.