Harnessing the Power of Multi-GPU Acceleration into the Quantum Interaction Computational Kernel Program

10 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We report a new multi-GPU capable ab initio Hartree-Fock/density functional theory implementation integrated into the open source QUantum Interaction Computational Kernel (QUICK) program. Details on the load balancing algorithms for electron repulsion integrals and exchange correlation quadrature across multiple GPUs are described. Benchmarking studies carried out on up to 4 GPU nodes, each containing 4 NVIDIA V100-SMX2 type GPUs demonstrate that our implementation is capable of achiev- ing excellent load balancing and high parallel efficiency. For representative medium to large size protein/organic molecular sys- tems, the observed efficiencies remained above 86%. The accelerations on NVIDIA A100, P100 and K80 platforms also have real- ized parallel efficiencies higher than 74%, paving the way for large-scale ab initio electronic structure calculations.


Graphics Processing Units
Parallel Computing
Quantum Chemistry Software
Hartree Fock
Density Functional Theory

Supplementary materials

SI 02072021


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.