Reduction of O2 to H2O2 using Small Polycyclic Molecules

17 July 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hydrogen peroxide is an environmentally friendly oxidizing agent that is important in several industries. It is currently produced industrially via the anthrahydroquinone (AHQ) process where O2 reacts with a functionalised version of anthrahydroquinone to produce H2O2 and anthraquinone. In the previously published DFT pathway for this process the transition of the OOH? radical across the partially dehydrogenated AHQ catalyst was not explored. In this paper, we will use DFT to explore this step and show that there is a deep potential energy minimum that inhibits the OOH. from being fully reduced. We then examine other similar sized polycyclic molecules with two OH-groups on the same side that could serve as alternative catalysts without this issue. In this analysis, we identify Phenanthraquinone as a possible alternative and present the pathway for this candidate to produce H2O2 as well as its regeneration with H2.

Keywords

density functional theory
Hydrogen Peroxide Synthesis
Anthraquinone Process

Supplementary materials

Title
Description
Actions
Title
20200707 RedO2toH2O2 KLopezandMNGroves SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.