Wildfire-Derived Pyrogenic Carbon Modulates Organic Matter and Microbial Functioning in a Fluvial Ecosystem

04 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Wildfires produce large amounts of pyrogenic carbon (PyC), including particulate charcoal, known for its chemical recalcitrance and sorption affinity for organic molecules. Wildfire-derived PyC is highly mobile in the landscape and can be transported to fluvial networks where it may impact natural dissolved organic matter (DOM) and microbial biofilms. The effects of PyC on freshwater ecosystems and carbon cycling therein remain poorly investigated. To address this research gap, we used in-stream flumes with a control vs treatment design (pulse addition of PyC particles). We present evidence that field-aged PyC inputs into river ecosystems can alter dissolved organic carbon (DOC) concentration, DOM composition, pH, and enzymatic activities in benthic biofilms. In stream DOM composition was altered due to leaching of pyrogenic DOM from PyC and possible concurrent sorption of riverine DOM to PyC. DOM changes and increase in pH were associated with changes in enzymatic activities, which reflected preferential usageof recalcitrant over easily available DOM by biofilms. Furthermore, we observed particulate PyC sedimentation on biofilm surfaces, which may further modulate the impacts of PyC. This study highlights the importance of PyC for in-stream DOM propertiesand biofilm functioning with implications for in-stream biogeochemical cycling in fire affected watersheds.

Keywords

Pyrogenic carbon
dissolved organic matter
biofilm functioning
enzymatic activities
DOM
PyC
PyOM
EA

Supplementary materials

Title
Description
Actions
Title
210202 limnic fires SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.