Modelling Molecular Emitters in Organic Light Emitting Diodes with the Quantum Mechanical Bespoke Force Field

03 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Combined molecular dynamics (MD) and quantum mechanics (QM) simulation procedures have gained popularity in modelling the spectral properties of functional organic molecules. However, the potential energy surfaces used to propagate long-time scale dynamics in these simulations are typically described using general, transferable force fields designed for organic molecules in their electronic ground states. These force fields do not typically include spectroscopic data in their training, and importantly there is no general protocol for including changes in geometry or intermolecular interactions with the environment that may occur upon electronic excitation. In this work, we show that parameters tailored for thermally activated delayed fluorescence (TADF) emitters used in organic light emitting diodes (OLEDs), in both their ground and electronically excited states, can be readily derived from a small number of QM calculations using the QUBEKit (QUantum mechanical BEspoke toolKit) software, and improve the overall accuracy of these simulations.


Quantum mechanics
Force fields
Molecular dynamics


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.