Stability of Calcium Ion Battery Electrolytes: Predictions from Ab Initio Molecular Dynamics Simulations

02 February 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Multivalent batteries, such as magnesium-ion, calcium-ion, and zinc-ion batteries, have attracted significant attention as next-generation electrochemical energy storage devices to complement conventional lithium-ion batteries (LIBs). Among them, calcium-ion batteries (CIBs) are the least explored due to the difficult reversible Ca deposition-dissolution. In this work, we examined the stability of four different Ca salts with weakly coordinating anions and three different solvents commonly employed in existing battery technologies to identify suitable candidates for CIBs. By employing Born-Oppenheimer molecular dynamics (BOMD) simulations on salt-Ca and solvent-Ca interfaces, we find that the tetraglyme solvent and carborane salt are promising candidates for CIBs. Due to the strong reducing nature of the calcium surface, the other salts and solvents readily decompose. We explain the microscopic mechanisms of salt/solvent decomposition on the Ca surface using time-dependent projected density of states, time-dependent charge-transfer plots, and climbing-image nudged elastic band calculations. Collectively, this work presents the first mechanistic assessment of the dynamical stability of candidate salts and solvents on a Ca surface using BOMD simulations, and provides a predictive path toward designing stable electrolytes for CIBs.

Keywords

electrochemistry
electrochemical energy storage
electrolytes
battery chemistry
ab initio molecular dynamics
calcium ion batteries
multivalent batteries
energy storage
stable electrolytes
tetraglyme
carborane

Supplementary materials

Title
Description
Actions
Title
SI stable battery electrolytes
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.