Theoretical and Computational Chemistry

Multiwavelets Applied to Metal-Ligand Interactions: Energies Free from Basis Set Errors



The following article will be submitted to the Journal of Chemical Physics. It is thus not a peer-reviewed manuscript. After it is hopefully accepted for publication, it will be found (in revised form) at

Transition metal-catalyzed reactions invariably include steps, where ligands associate or dissociate. In order to obtain reliable energies for such reactions, sufficiently large basis sets need to be employed. In this paper, we have used high-precision Multiwavelet calculations to compute the metal-ligand association energies for 27 transition metal complexes with common ligands such as H2, CO, olefins and solvent molecules. By comparing our Multiwavelet results to a variety of frequently used Gaussian-type basis sets, we show that counterpoise corrections, which are widely employed to correct for basis set superposition errors, often lead to underbinding. Additionally, counterpoise corrections are difficult to employ, when the association step also involves a chemical transformation. Multiwavelets, which can be conveniently applied to all types of reactions, provide a promising alternative for computing electronic interaction energies free from any basis set errors.

Version notes

This is Version 1, which will be submitted to the Journal of Chemical Physics. After it is published, the revised version will be found at


Thumbnail image of Manuscript_MWonTM_31012021.pdf

Supplementary material

Thumbnail image of Supporting Information_MWonTM_31012021.pdf
Supporting Information MWonTM 31012021
Thumbnail image of ALL_GEOMETRIES.txt