Ionic Liquid Facilitated Melting of the Metal-Organic Framework ZIF-8

28 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hybrid glasses from melt-quenched metal-organic frameworks (MOFs) have been emerging as a new class of materials, which combine the functional properties of crystalline MOFs with the processability of glasses. However, only a handful of the vast variety of crystalline MOFs have been identified as being meltable. Porosity and metal-linker interaction strength have both been identified as crucial parameters in the trade-off between thermal decomposition of the organic linker and, more desirably, melting. For example, the inability of the prototypical zeolitic imidazolate framework (ZIF) ZIF-8 to melt, is ascribed to the instability of the organic linker upon dissociation from the metal center. Here, we demonstrate that the incorporation of an ionic liquid (IL) into the porous interior of ZIF-8 provides a means to reduce its melting temperature to below its thermal decomposition temperature (Tm < Td). Experimental evidence shows that the Tm of ZIF-8 obtained by IL infiltration is around 381 °C, and that the glass forming ability (Tg/Tm) of such melts is above 0.9, i.e. higher than those previously reported for other meltable MOFs. Our structural studies show that the prevention of decomposition, and successful melting, is due to the IL interactions stabilizing the rapidly dissociating ZIF-8 linkers upon heating. This understanding may act as a general guide for extending the range of meltable MOF materials and, hence, the chemical and structural variety of MOF-derived glasses.

Keywords

Glass science
Metal-organic framework
zeolitic imidazolate framework 8
zeolitic imidazolate framework materials
Hybrid Glass Matrix
Ionic Liquids Entrapped

Supplementary materials

Title
Description
Actions
Title
IL@ZIF-8 glass-Supporting info
Description
Actions
Title
Supplementary videos
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.