Abstract
We report a non-MOF crystalline material {[Mn(imH)]2[Mo(CN)8]}n (imH = imidazole) with exceptional water sorption properties and a very large breathing effect accompanied by an outstanding stability and cyclability – properties that are absolutely unique for this class of compounds (Prussian Blue Analogs). Some previously published PBAs indeed show some sorption properties, but their cyclability is extremely limited - usually 1-3 cycles - followed by significant decomposition/amorphization. Our compound can be cycled more than 50 times without any fatigue and the sorption/desorption proceeds through four different crystal phases, which we have fully characterized structurally enabling the complete understanding of the sorption and breathing mechanism in this material - an achievement rarely reported for MOFs or PBAs.
The unique structure of {[Mn(imH)]2[Mo(CN)8]}n enables very strong coupling of its exceptional water sorption performance with the magnetic and photomagnetic properties of the framework, e.g. the sorption process can be followed by in-situ EPR spectroscopy with huge changes in the EPR signal intensity depending on the hydration level.
The unique structure of {[Mn(imH)]2[Mo(CN)8]}n enables very strong coupling of its exceptional water sorption performance with the magnetic and photomagnetic properties of the framework, e.g. the sorption process can be followed by in-situ EPR spectroscopy with huge changes in the EPR signal intensity depending on the hydration level.
Supplementary materials
Title
SI
Description
Actions