Surfactant-Free Colloidal Strategies for Highly Dispersed and Active Supported IrO2 Catalysts: Synthesis and Performance Evaluation for the Oxygen Evolution Reaction

28 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Supported Ir oxide catalysts obtained from surfactant-free colloidal Ir nanoparticles (NPs) synthesized in alkaline methanol (MeOH), ethanol (EtOH), and ethylene glycol (EG) are investigated and compared. The comparison of independent techniques such as transition electron microscopy (TEM), small angle X-ray scattering (SAXS), and electrochemistry allows shedding light on the parameters that affect the dispersion of the active phase as well as the catalytic activity. The colloidal dispersions obtained are suitable to develop supported catalysts with little NP agglomeration on a carbon support leading to highly active catalysts with more than 400 A g-1Ir reached at 1.5 VRHE for the OER. While the more common surfactant-free alkaline EG synthesis requires flocculation and re-dispersion leading to Ir loss, the main difference between methanol and ethanol as solvent is related to the dispersibility of the support material. The choice of the suitable monoalcohol determines the maximum achieved Ir loading on the support without detrimental particle agglomeration. This simple consideration on catalyst design can readily lead to significantly improved catalysts.


Oxygen Evolution Reaction
Colloidal Synthesis

Supplementary materials

Bizzotto et al SI


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.