Computational Protein Stabilization Can Affect Folding Energy Landscapes and Lead to Domain-Swapped Dimers

27 January 2021, Version 1

Abstract

The functionality of a protein depends on its unique three-dimensional structure, which is a result of the folding process when the nascent polypeptide follows a funnel-like energy landscape to reach a global energy minimum. Computer-encoded algorithms are increasingly employed to stabilize native proteins for use in research and biotechnology applications. Here, we reveal a unique example where the computational stabilization of a monomeric α/β-hydrolase enzyme (Tm = 73.5°C; ΔTm > 23°C) affected the protein folding energy landscape. Introduction of eleven single-point stabilizing mutations based on force field calculations and evolutionary analysis yielded catalytically active domain-swapped intermediates trapped in local energy minima. Crystallographic structures revealed that these stabilizing mutations target cryptic hinge regions and newly introduced secondary interfaces, where they make extensive non-covalent interactions between the intertwined misfolded protomers. The existence of domain-swapped dimers in a solution is further confirmed experimentally by data obtained from SAXS and crosslinking mass spectrometry. Unfolding experiments showed that the domain-swapped dimers can be irreversibly converted into native-like monomers, suggesting that the domain-swapping occurs exclusively in vivo. Our findings uncovered hidden protein-folding consequences of computational protein design, which need to be taken into account when applying a rational stabilization to proteins of biological and pharmaceutical interest.

Keywords

protein folding
protein design
α/β-hydrolase
haloalkane dehalogenase
domain-swapping
dimerization
energy landscape
oligomerization

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.