Planar and Rigid Pyrazine Based TADF Emitter for Deep Blue Bright Organic Light Emitting Diodes

25 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Two blue thermally activated delayed fluorescence (TADF) emitters bearing di-tert-butyl carbazoles as the electron donor groups and pyrazine (DTCz-Pz) or dipyrazine (DTCz-Pz) as the electron acceptor are presented. The DFT calculations predict DTCz-Pz and DTCz-DPz to possess high S1 energies (3.19 eV and 3.08 eV, respectively), and relatively large EST values (0.52 eV and 0.56 eV, respectively). The closely layered intermediate triplet states between S1 and T1, predicted by DFT calculations, are expected to facilitate the reverse intersystem crossing (RISC) and improve spin-vibronic coupling efficiency between the excited states even the relatively larger ΔESTs. The ΔESTs for DTCz-Pz and DTCz-DPz are 0.27 eV and 0.38 eV, and both molecules show high photoluminescence quantum yields (65%, and 70%, respectively) and the decay lifetimes show temperature dependence in a PPT host, which is consistent that both molecules are TADF emitters in PPT. The OLEDs based on DTCz-Pz exhibit deep blue emission with λEL of 460 nm and CIE of (0.15, 0.16). The maximum external quantum efficiency (EQEmax) reaches 11.6%, with a maximum luminance (Lmax) of up to 6892 cd m-2, while the device based on DTCz-DPz exhibits sky blue emission with λEL of 484 nm and CIE of (0.15, 0.30), an EQEmax of 7.2%, and Lmax of 8802 cd m-2.

Keywords

TADF
pyrazine
OLED applications
Thermally Activated Delayed Fluorescence (TADF)

Supplementary materials

Title
Description
Actions
Title
Pyrazine ESI-final
Description
Actions
Title
DTCz-Pz and DTCz-DPz
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.