Local Electric Fields as a Natural Switch of Heme-Iron Protein Reactivity

22 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Heme-iron oxidoreductases operating through the high-valent FeIVO intermediates perform crucial and complicated transformations, such as oxidations of unreactive saturated hydrocarbons. These enzymes share the same Fe coordination, only differing by the axial ligation, e.g., Cys in P450 oxygenases, Tyr in catalases, and His in peroxidases. By examining ~200 heme-iron proteins, we show that the protein hosts exert highly specific intramolecular electric fields on the active sites, and there is a strong correlation between the direction and magnitude of this field and the protein function. In all heme proteins, the field is preferentially aligned with the Fe‒O bond (Fz). The Cys-ligated P450 oxygenases have the highest average Fz of 28.5 MV cm-1, i.e., most enhancing the oxyl-radical character of the oxo group, and consistent with the ability of these proteins to activate strong C‒H bonds. In contrast, in Tyr-ligated proteins, the average Fz is only 3.0 MV cm-1, apparently suppressing single-electron off-pathway oxidations, and in His-ligated proteins, Fz is –8.7 MV cm-1. The operational field range is given by the trade-off between the low reactivity of the FeIVO Compound I at the more negative Fz, and the low selectivity at the more positive Fz. Consequently, a heme-iron site placed in the field characteristic of another heme-iron protein class loses its canonical function, and gains an adverse one. Thus, electric fields produced by the protein scaffolds, together with the nature of the axial ligand, control all heme-iron chemistry.


Electrostatic preorganization
Heme Iron
Electric field

Supplementary materials

SupportingInformation hemes


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.