Highly Accurate Many-Body Potentials for Simulations of N2O5 in Water: Benchmarks, Development, and Validation

21 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Dinitrogen pentoxide (N2O5) is an important intermediate in the atmospheric chemistry of nitrogen oxides. Although there has been much research, the processes that govern the physical interactions between N2O5 and water are still not fully understood at a molecular level. Gaining quantitative insight from computer simulations requires going beyond the accuracy of classical force fields, while accessing length scales and time scales that are out of reach for high-level quantum chemical approaches. To this end we present the development of MB-nrg many-body potential energy functions for simulations of N2O5 in water. This MB-nrg model is based on electronic structure calculations at the coupled cluster level of theory and is compatible with the successful MB-pol model for water. It provides a physically correct description of long-range many-body interactions in combination with an explicit representation of up to three-body short-range interactions in terms of multidimensional permutationally invariant polynomials. In order to further investigate the importance of the underlying interactions in the model, a TTM-nrg model was also devised. TTM- nrg is a more simplistic representation that contains only two-body short-range interactions represented through Born-Mayer functions. In this work an active learning approach was employed to efficiently build representative training sets of monomer, dimer and trimer structures, and benchmarks are presented to determine the accuracy of our new models in comparison to a range of density functional theory methods. By assessing binding curves, distortion energies of N2O5, and interaction energies in clusters of N2O5 and water, we evaluate the importance of two-body and three-body short-range potentials. The results demonstrate that our MB-nrg model has high accuracy with respect to the coupled cluster reference, outperforms current density functional theory models, and thus enables highly accurate simulations of N2O5 in aqueous environments.

Keywords

dinitrogen pentoxide
n2o5
water
clusters
many-body potentials
coupled cluster calculations
Density Functional Calculations
benchmarks

Supplementary materials

Title
Description
Actions
Title
paper n2o5 si
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.