Heterogeneous Adsorption and Local Ordering of Formate on a Magnetite Surface

20 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report a novel heterogeneous adsorption mechanism of formic acid on the magnetite (111) surface. Our experimental results and DFT calculations give evidence for dissociative adsorption of formic acid in quasi-bidentate and chelating geometries. The latter is induced by the presence of iron vacancies at the surface, making oxygen atoms accessible for hydrogen atoms from dissociated formic acid. DFT calculations predict that both adsorption geometries are energetically favorable under our experimental conditions. The calculations prove that the locally observed (sqrt(3)xsqrt(3)) R30° superstructure consists of formate in a triangular arrangement, adsorbed predominantly in chelating geometry. The results show how defects can stabilize alternative adsorption geometries, which is a crucial ingredient for a detailed atomistic understanding of reaction barriers on magnetite and other oxide surfaces, as well as for the stability of carboxylic acid based nanocomposite materials.

Keywords

adsorption
interfaces
Oxide Surfaces
surface chemistry
carboxylic acids

Supplementary materials

Title
Description
Actions
Title
FA Magn111 SI 2021 01 19 final
Description
Actions
Title
MovieS1 chel OCO asym circular
Description
Actions
Title
MovieS2 chel OCO asym circular top
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.