Struct2IUPAC -- Transformer-Based Artificial Neural Network for the Conversion Between Chemical Notations

12 January 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.


Providing IUPAC chemical names is necessary for chemical information exchange. We developed a Transformer-based artificial neural architecture to translate between SMILES and IUPAC chemical notations: Struct2IUPAC and IUPAC2Struct. Our models demonstrated the performance that is comparable to rule-based solutions. We proved that both accuracy, speed of computations, and the model's robustness allow us to use it in production. Our showcase demonstrates that a neural-based solution can encourage rapid development keeping the same performance. We believe that our findings will inspire other developers to reduce development costs by replacing complex rule-based solutions with neural-based ones. The demonstration of Struct2IUPAC model is available online on Syntelly platform


machine learning
chemical nomenclature
Artificial Intelligence
IUPAC Nomenclature


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.