Visible-Light-Induced Deep Aerobic Oxidation of Alkyl Aromatics

19 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Oxidation is a major chemical process to produce oxygenated chemicals in both nature and chemical industry. Currently, industrial deep oxidation processes from polyalkyl benzene are major routes to produce benzoic acids and benzene polycarboxylic acids (BPCAs), while to some extent suffering from the energy-intensive and potentially hazardous drawbacks and the sluggish separation issues. In this report, visible-light-induced deep aerobic oxidation of (poly)alkyl benzene to benzene (poly)carboxylic acids was developed. CeCl3 was proved to be an efficient HAT (Hydrogen Atom Transfer)catalyst in the presence of alcohol as both hydrogen and electron shuttle. Dioxygen (O2) was found as a sole terminal oxidant. In most cases, pure products were easily isolated by simple filtration, showing the advantages of for scaling up. The reaction provides an ideal way to form valuable fine chemicals from abundant petroleum feedstocks.

Keywords

photo-induced
Aerobic Oxidations
alkyl aromatics
benzoic acids

Supplementary materials

Title
Description
Actions
Title
SI-data-0118-FL
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.