A Bifunctional Iminophosphorane Squaramide Catalyzed Enantioselective Synthesis of Hydroquinazolines via Intramolecular Aza-Michael Addition to α,β-Unsaturated Esters

19 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

An efficient synthesis of enantioenriched hydroquinazoline cores via a novel bifunctional iminophosphorane squaramide catalyzed intramolecular aza-Michael addition of urealinked α,β-unsaturated esters is described. The methodology exhibits a high degree of functional group tolerance around the forming hydroquinazoline aryl core and wide structural variance on the nucleophilic N atom of the urea moiety. Excellent yields (up to 99%) and high enantioselectivities (up to 97:3 e.r.) using both aromatic and less acidic aliphatic ureas were realized. The potential industrial applicability of the transformation was demonstrated in a 20 mmol scale-up experiment using an adjusted catalyst loading of 2 mol%. The origin of enantioselectivity and reactivity enhancement provided by the squaramide motif has been uncovered computationally using density functional theory (DFT) calculations, combined activation strain model (ASM) and energy decomposition analysis (EDA).

Keywords

enantioselective
aza-Michael reaction
BIMP catalysis
chiral hydroquinazolines
Urea Activation

Supplementary materials

Title
Description
Actions
Title
SI A Bifunctional Iminophosphorane Squaramide Catalyzed Enantioselective Synthesis of Hydroquinazolines via Intramolecular Aza-Michael Addition to α,β-Unsaturated Este
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.