Organic Chemistry

Thioesters Provide a Robust Path to Prebiotic Peptides



The condensation of building blocks into oligomers and polymers was an early and important stage in the origins of life. High activation energies, unfavorable thermodynamics and side reactions are bottlenecks for abiotic formation of peptides. Thioesters are hypothesized to have played key roles in prebiotic chemistry on early Earth, serving as energy storing molecules, as synthetic intermediates, and as catalysts in the formation of more complex molecules, including polypeptides. However, all abiotic reactions reported thus far for peptide formation via thioester intermediates have relied on activated building blocks or condensing agents, which are of questionable prebiotic relevance. We report robust, plausible prebiotic reactions of mercaptoacids with amino acids that result in the formation of peptides and thiodepsipeptides, which contain both peptide and thioester bonds. Peptide bond formation proceeds by the condensation of mercaptoacids to form thioesters followed by thioester-amide exchange. Mercaptoacids catalyze thiodepsipeptides and peptide formation under a wide range of pH conditions and at mild temperatures. Our results offer the most robust one-pot pathway for peptide formation ever reported. These results support the hypothesis that thiodepsipeptides formed robustly on prebiotic Earth and were possible contributors to early chemical evolution.


Thumbnail image of Manuscript_Thiodepsipeptides_011521_c.pdf

Supplementary material

Thumbnail image of Supporting_Information_011521.pdf
Supporting Information 011521