Thioesters Provide a Robust Path to Prebiotic Peptides

18 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The condensation of building blocks into oligomers and polymers was an early and important stage in the origins of life. High activation energies, unfavorable thermodynamics and side reactions are bottlenecks for abiotic formation of peptides. Thioesters are hypothesized to have played key roles in prebiotic chemistry on early Earth, serving as energy storing molecules, as synthetic intermediates, and as catalysts in the formation of more complex molecules, including polypeptides. However, all abiotic reactions reported thus far for peptide formation via thioester intermediates have relied on activated building blocks or condensing agents, which are of questionable prebiotic relevance. We report robust, plausible prebiotic reactions of mercaptoacids with amino acids that result in the formation of peptides and thiodepsipeptides, which contain both peptide and thioester bonds. Peptide bond formation proceeds by the condensation of mercaptoacids to form thioesters followed by thioester-amide exchange. Mercaptoacids catalyze thiodepsipeptides and peptide formation under a wide range of pH conditions and at mild temperatures. Our results offer the most robust one-pot pathway for peptide formation ever reported. These results support the hypothesis that thiodepsipeptides formed robustly on prebiotic Earth and were possible contributors to early chemical evolution.

Keywords

Thioester-amide exchange
Chemical evolution
Prebiotic peptides
Thiodepsipeptides

Supplementary materials

Title
Description
Actions
Title
Supporting Information 011521
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.