Crystal Structure and Electrical/thermal Transport Properties of Li1-xSn2+xP2 and Its Performance as a Li-Ion Battery Anode Material

18 January 2021, Version 1

Abstract

A new ternary layered pnictide, Li1-xSn2+xP2, was synthesized by a solid-state reaction and its properties were examined to explore its potential as a multifunctional material. The compound crystallizes in a layered structure in the R-3m space group with buckled honeycomb Sn-P layers separated by mixed-occupation Li/Sn layers. Crystal structure analysis using synchrotron X-ray diffraction showed that the substitution degree of Li by Sn (x) is approximately 0.3. Local ordering of Li/Sn occupation was demonstrated using 31P nuclear magnetic resonance analysis. The lattice thermal conductivity of Li1-xSn2+xP2 was found to be relatively low (1.2 Wm−1K−1 at 525 K). The room-temperature electrical resistivity of Li1-xSn2+xP2 was found to be 0.3-0.4 mohm cm and metallic conductivity was observed down to 0.5 K. First-principles calculations demonstrated that the electronic structure and Fermi energy of Li1-xSn2+xP2 are significantly dependent upon x. Electrochemical measurements using a single-particle technique demonstrated the activity of Li1-xSn2+xP2 as an anode material for rechargeable Li-ion batteries.

Keywords

crystal structure analysis
superconductivity
thermoelectric materials
Li-ion battery electrodes

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.