Electrocatalytic Efficiency of the Oxidation of Ethylene glycol, Glycerol, and Glucose under Oscillatory Regime

18 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

There is an increasingly interest in the use of small organic molecules in the interconversion between chemical and electrical energies. Among the strategies to improve the processes of yielding electrical energy in fuel cells and the production of clear hydrogen in electrochemical reform is the use of kinetic instabilities to improve the conversion and selectivity. Herein we report on the electrocatalytic efficiency of the oxidation of ethylene glycol, glycerol, and glucose, under regular and oscillatory regimes, on polycrystalline platinum, in sulfuric acid aqueous solution, and at 25 oC. Despite the high overpotentials for the electro-oxidation of these molecules, the electrochemical activity along quasi-stationary potentio/gavanostatic experiments evidenced that, in all cases, relatively lower potential values, and thus higher activity, are reached during oscillations. Noticeably higher power densities for the electrooxidation of ethylene glycol and glycerol under oscillatory regime in a hypothetical direct liquid fuel cell. The use of identical experimental conditions of that of our previous study[J. Phys. Chem. C 120 (2016) 22365] allowed at discussing some universal trends for seven small organic molecules. We compile the results in terms of the peak current, the maximum poisoning rate found along the oscillations, and the oscillation frequency. The three parameters were found to decrease in the order: formaldehyde > formic acid > methanol > ethanol > ethylene glycol > glycerol > glucose. In addition, we discussed the increase of the voltammetric current with the self-organized poisoning rate and reinforce the trend that high electrocatalytic activity implies high susceptibility to surface poisoning for this set of species. Finally, the analysis done for all species (formic acid, formaldehyde, methanol, ethylene glycol, ethanol, glycerol, and glucose) adds to the available thermodynamic data and is a benchmark against which the activities under oscillatory regime at 25 oC may be compared or assessed. This point of reference permits to explore further experimental conditions that are relevant for energy-related devices, including the conversion of chemical into electrical energy and the electrochemical reform to produce clean hydrogen in electrolyzers.

Keywords

electrocatalysis
oscillations
efficiency
ethylene glycol
glycerol
glucose

Supplementary materials

Title
Description
Actions
Title
SI GBM efficiency
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.