Characterizing Nitrogen Sites in Nitrogen-Doped Reduced Graphene Oxide: A Combined Solid-State 15N NMR, XPS and DFT Approach

18 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Despite the potential applications in energy storage and conversion systems such as Li-oxygen batteries and fuel cells, the nature and distribution of doped nitrogen sites in reduced graphene oxides are still not well understood. In this work, we report a combined approach of 15N solid-state nuclear magnetic resonance (NMR) spectroscopy alongside the predominantly used X-ray photoelectron spectroscopy (XPS) to characterize the nitrogen environments in reduced graphene oxides. Application of 1H-15N low-power double quantum cross polarization under fast magic angle spinning with Carr-Purcell-Meiboom-Gill scheme shows selective detection of protonated sites with low-power radiofrequency irradiation. NMR shift calculations of a series of N-containing molecules and a graphene nanoflake model were performed to help interpret the experimental data. This work demonstrates a powerful approach to identify and quantify the different nitrogen environments in doped graphene materials and can also be widely applied to similar graphitic carbon-based materials with other dopants.

Keywords

Doped Graphene
Solid-State NMR
XPS
Ab initio

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.