Catalyst-Controlled Regiodivergence in Rearrangements of Indole-Based Onium Ylides

18 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


We have developed catalyst-controlled regiodivergent rearrangements of onium-ylides derived from indole substrates. Oxonium ylides formed in situ from substituted indoles selectively undergo [2,3]- and [1,2]-rearrangements in the presence of a rhodium and copper catalyst, respectively. The combined experimental and density functional theory (DFT) computational studies indicate divergent mechanistic pathways involving a metal-free ylide in the rhodium catalyzed reaction favoring [2,3]-rearrangement, and a metal-coordinated ion-pair in the copper catalyzed [1,2]-rearrangement that recombines in the solvent-cage. The application
of our methodology was demonstrated in the first total synthesis of the indole alkaloid (±)-sorazolon B, which enabled the stereochemical reassignment of the natural product. Further functional group transformations of the rearrangement products to generate valuable synthetic intermediates were also demonstrated.


oxonium ylide formation
rhodium catalysis
copper catalysis
Natural Product Synthesis


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.