Site-Fixed Hydroboration of Alkenes under Metal-Free Conditions: Scope and Mechanistic Studies

13 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

An unprecedented and general metal-free hydroboration of alkenes with BBr3 as the boration reagent in the presence of iPr2NEt is reported. The addition of iPr2NEt not only suppresses alkene oligomerization and bromoboration side reactions, but also provides a proton source for hydroboration. More importantly, the site-fixed installation of a boryl group at the original position of the internal double-bond is easily achieved using our strategy as compared with traditional transition-metal-catalyzed hydroboration processes. Preliminary studies on the mechanism revealed a distinct reaction pathway that involves radical species and may operate through frustrated-Lewispair-type single-electron transfer.

Keywords

metal-free
boration reagent
Alkene
site-fixed
boronate ester

Supplementary materials

Title
Description
Actions
Title
LW ChemRxiv SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.