Silica-Pillared Mo2TiC2 MXene for High-Power and Long-life Lithium and Sodium-ion Batteries

17 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In this work, we apply an amine-assisted silica pillaring method to create the first example of a porous Mo2TiC2 MXene with nanoengineered interlayer distances. The pillared Mo2TiC2 has a surface area of 202 m2 g-1, which is among the highest reported for any MXene, and has a variable gallery height between 0.7 and 3 nm. The expanded interlayer distance leads to significantly enhanced cycling performance for Li-ion storage, with superior capacities, rate capabilities and cycling stabilities in comparison to the non-pillared version. The pillared Mo2TiC2 achieved capacities over 1.7 times greater than multilayered MXene at 20 mA g-1 (≈ 320 mAh g-1) and 2.5 times higher at 1 A g-1 (≈ 150 mAh g-1). The fast-charging properties of pillared Mo2TiC2 are further demonstrated by outstanding stability even at 1 A g-1 (under 8 min charge time), retaining 80% of the initial capacity after 500 cycles. Furthermore, we use a combination of spectroscopic techniques (i.e. XPS, NMR and Raman) to show unambiguously that the charge storage mechanism of this MXene occurs by a conversion reaction through the formation of Li2O. This reaction increases by 2-fold the capacity beyond intercalation, and therefore, its understanding is crucial for further development of this family of compounds. In addition, we also investigate for the first time the sodium storage properties of the pillared and non-pillared Mo2TiC2.

Keywords

MXenes
2D Materials
Li-ion Storage
Na-ion batteries (NIBs)
porous materials

Supplementary materials

Title
Description
Actions
Title
SI Maughan et al
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.