Comparative Molecular Dynamics Study of the Roles of Anion– Cation and Cation–Cation Correlation in Cation Diffusion in Li2B12H12 and LiCB11H12

12 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Complex hydrides are potential candidates for the solid electrolyte of all-solid-state batteries owing to their high ionic conductivities, in which icosahedral anion reorientational motion plays an essential role in high cation diffusion. Herein, we report molecular dynamics (MD) simulations based on a refined force field and first-principles calculations of the two complex hydride systems Li2B12H12 and LiCB11H12 to investigate their structures, order–disorder phase-transition behavior, anion reorientational motion, and cation conductivities. For both systems, force-field-based MD successfully reproduced the structural and dynamical behavior reported in experiments. Remarkably, it showed an entropy-driven order–disorder phase transition associated with high anion reorientational motion. Furthermore, we obtained comparative insights into the cation around the anion, cation site occupancy in the interstitial space provided by anions, cation diffusion route, role of cation vacancies, anion reorientation, and effect of cation–cation correlation on cation diffusion. We also determined the factors that activate anion reorientational motion leading to a low to high conductivity phase transition. These findings are of fundamental importance in fast ion-conducting solids to diminish the transition temperature for practical applications.

Keywords

phase-transition route
solid state battery
Ionic Diffusion
Molecular Dynamics Simulation Study

Supplementary materials

Title
Description
Actions
Title
supporting
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.