Cysteine Borylation in Unprotected Peptides

12 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Synthetic bioconjugation at cysteine (Cys) residues in peptides and proteins has emerged as a powerful tool in chemistry. Soft nucleophilicity of the sulfur in Cys renders an exquisite chemoselectivity with which various functional groups can be placed onto this residue under benign conditions. While a variety of reactions have been successful at producing Cys-based bioconjugates, the majority of these feature sulfur-carbon bonds. We report Cys-borylation, wherein a benchtop stable Pt(II)-based organometallic reagent can be used to transfer a boron-rich cluster onto a sulfur moiety in unprotected peptides forging a boron-sulfur bond. Discovered Cysborylation proceeds at room temperature and is tolerant to a variety of functional groups present in complex polypeptides. The resultant bioconjugates show no additional toxicity compared to their Cys aryl-based congeners. Finally, we demonstrate how the developed Cys-borylation can enhance the proteolytic stability of the produced peptide bioconjugates while maintaining the binding affinity to a protein target.

Keywords

cysteine borylation
peptide borylation
organometallic reagent
cysteine bioconjugation
ACE receptor
peptide inhibitor
carborane

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.