Effects of External Field Wavelength and Solvation on the Photophysical Property and Optical Nonlinearity of 1,3-Thiazolium-5-Thiolates Mesoionic Compound

07 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


The photophysical property and optical nonlinearity of an electronic push-pull mesoionic compond, 2-(4-trifluoromethophenyl)-3-methyl-4-(4-methoxyphenyl)-1,3-thiazole-5-thiolate were theoretically investigated with a reliable computing strategy. The essence of the optical properties were then explored through a variety of wave function analysis methods, such as the natural transition orbital analysis, hole-electron analysis, (hyper)polarizability density analysis, decomposition of the (hyper)polarizability contribution by numerical integration, and (hyper)polarizability tensor analysis, at the level of electronic structures. The influence of the electric field and solvation on the electron absorption spectra and (hyper)polarizabilities of the molecule are highlighted and clarified. This work will help people to understand the influence of external field wavelength and solvent on the optical properties of mesoionic-based molecules, and provide a theoretical reference for the rational design of chromophores with adjustable properties in the future.


external field wavelength
Photophysical Property
Optical Nonlinearity
Mesoionic Compound

Supplementary materials

Supporting information


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.