A Comparison of Separators vs. Membranes in Nonaqueous Redox Flow Battery Electrolytes Containing Small Molecule Active Materials

06 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The lack of suitable membranes for nonaqueous electrolytes limits cell capacity and cycle lifetime in organic redox flow cells. Using soluble, stable materials, we sought to compare the best performance that could be achieved with commercially available microporous separators and ion-selective membranes. We use organic species with proven stability to avoid deconvoluting capacity fade due to crossover and/or cell imbalance from materials degradation. We found a trade-off between lifetime and coulombic efficiency: non-selective separators achieve more stable performance but suffer from low coulombic efficiencies, while ion-selective membranes achieve high coulombic efficiencies but experience capacity loss over time. When electrolytes are pre-mixed prior to cycling, coulombic efficiency remains high, but capacity is lost due to cell imbalance, which can be recovered by electrolyte rebalancing. The results of this study highlight the potential for gains in nonaqueous cell performance that may be enabled by suitable membranes.

Keywords

Redox flow battery
separator
membrane
crossover
organic electrolyte
phenothiazine
viologen

Supplementary materials

Title
Description
Actions
Title
UK-MIT04 SI for submission
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.