Thermochromic AIE Dual Phosphorescence via Temperature-Dependent sp3-Linked Donor-Acceptor Electronic Coupling

18 December 2020, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Aggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient RTP in bulk by restricting molecular motions. Here we show that by utilizing triphenylamine (TPA) as an electronic donor which connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Both the TPA AIE-gen and the sp3-linkage can suppress aggregation-caused quenching. Consequently, dual phosphorescence bands emitting from localized donor and acceptor triplet states, respectively, could be recorded at lowered temperatures; at room temperature, only a single RTP band corresponding to the lowest triplet state is present, presumably due to thermally assisted electronic coupling between the two states. The reported molecular construct serves as an “intermediary case” between a fully conjugated donor-acceptor system and a do-nor/acceptor binary mix, which may provide important clues on the design and control of molecular systems with complex excited-state dynamics.

Keywords

aggregation-induced emission
Room-Temperature Phosphorescence
Dual Phosphorescence
Thermochromic
Electronic Coupling

Supplementary materials

Title
Description
Actions
Title
WT SI
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.