Benchmarking Coordination Number Prediction Algorithms on Inorganic Crystal Structures

22 June 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.


Coordination numbers and geometries form a theoretical framework for understanding and predicting materials properties. Algorithms to determine coordination numbers automatically are increasingly used for machine learning and automatic structural analysis. In this work, we introduce MaterialsCoord, a benchmark suite containing 56 experimentally-derived crystal structures (spanning elements, binaries, and ternary compounds) and their corresponding coordination environments as described in the research literature. We also describe CrystalNN, a novel algorithm for determining near neighbors. We compare CrystalNN against 7 existing near-neighbor algorithms on the MaterialsCoord benchmark, finding CrystalNN to be the most accurate overall. For each algorithm, we also assess computational demand and sensitivity towards small perturbations that mimic thermal motion. Finally, we investigate the similarity between bonding algorithms when applied to the Materials Project database. We expect that this work will aid the development of coordination prediction algorithms and improve the accuracy of structural descriptors for machine learning and other applications.


Bonding Analysis
Crystal structure
Coordination number

Supplementary materials

MaterialsCoord si


Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.