A Universal Deep Learning Framework based on Graph Neural Network for Virtual Co-Crystal Screening

05 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Cocrystal plays an important role in various fields. However, how to choose coformer remains a challenge on experiments. In this work, we develop a novel graph neural network (GNN) based deep learning framework to rapidly predict formation of the cocrystal. A large and reliable data set is first constructed, which contains 7871 samples. A complementary feature representation is proposed by combining molecular graph and molecular descriptors from priori knowledge. A new GNN learning architecture is then explored to effectively embed the priori knowledge into the “endto-end” learning on the molecular graph, in which multi-head attention mechanism is introduced to further optimize the feature space. Consequently, the performance of our model achieves 98.86% accuracy, greatly surpassing some traditional machine learning models and classic GNN models. Furthermore, the out-of-distribution prediction on energetic cocrystals is also high up to 97.11% accuracy, showing strong generalization.


Keywords

crystal engineering
cocrystal
deep learning
graph neural network
virtual screening

Supplementary materials

Title
Description
Actions
Title
Support Information-Table S1
Description
Actions
Title
Support Information-Table S2
Description
Actions
Title
Support Information-Figure S1-8, Table S3-5
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.