Exfoliation and Optical Properties of Near-Infrared Fluorescent Silicate Nanosheets

04 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The silicates Egyptian Blue (CaCuSi4O10, EB), Han Blue (BaCuSi4O10, HB) and Han Purple (BaCuSi2O6, HP) emit in bulk bright and stable fluorescence in the near-infrared (NIR), which is of high interest for (bio)photonics due to minimal scattering, absorption and phototoxicity in this spectral range. So far the optical properties of nanosheets (NS) of these silicates are poorly understood. Here, we exfoliate them into nanosheets and report their physicochemical properties. The approach uses ball milling followed by tip sonication and centrifugation steps to exfoliate the silicates into NS with a lateral size ≈ 16-27 nm and thickness ≈ 1-4 nm. They emit at ≈ 927 nm (EB-NS), 953 nm (HB-NS) and 924 nm (HP-NS) and single NS can be resolved in the NIR. Fluorescence lifetimes decrease from ≈ 30-100 μs (bulk) to 17 μs (EB- NS), 8 μs (HB-NS) and 7 μs (HP-NS). NS of different composition/size can be imaged by fluorescence lifetime imaging, which enables lifetime-encoded multicolor imaging both on the microscopic and the macroscopic scale. Finally, remote imaging through tissue phantoms reveals the potential for bioimaging. In summary, we report a procedure to gain NIR fluorescent silicate nanosheets, characterize their photophysical properties and show their potential for NIR photonics.

Keywords

Nanosheets
silicates
exfoliation
near infrared fluorescence
microscopy
fluorescence lifetime
(bio)photonics

Supplementary materials

Title
Description
Actions
Title
EBfriends supplementary information
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.