Combining Molecular Dynamic Information and an Aspherical-Atom Data Bank in the Evaluation of the Electrostatic Interaction Energy in Multimeric Protein-Ligand Complex: A Case Study for HIV-1 Protease

04 January 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Computational analysis of protein-ligand interactions is of crucial importance for drug discovery. Assessment of ligand binding energy allows us to have a glimpse on the potential of a small organic molecule to be a ligand to the binding site of a protein target. Available scoring functions such as in docking programs, we could say that they all rely on equations that sum each type of protein-ligand interactions to model the binding affinity. Most of the scoring functions consider electrostatic interactions involving the protein and the ligand. Electrostatic interactions contribute one of the most important part of total interaction energies between macromolecules, unlike dispersion forces they are highly directional and therefore dominate the nature of molecular packing in crystals and in biological complexes and contribute significantly to differences in inhibition strength among related enzyme inhibitors. In this paper, complexes of HIV-1 protease with inhibitor molecules (JE-2147 and Darunavir) have been analysed using charge densities from a transferable aspherical-atom data bank. Moreover, we analyse the electrostatic interaction energy for an ensemble of structures using molecular dynamic simulation to highlight the main features related to the importance of this interaction for binding affinity.

Keywords

UBDB, Electrostatic interaction energy, HIV protease, drug discovery, molecular dynamics

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.