Impact of Noble-Gas Filler Atoms on the Lattice Thermal Conductivity of CoSb3 Skutterudites: First-Principles Modelling

22 December 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present a systematic first-principles modelling study of the structural dynamics and thermal transport in the CoSb3 skutterudites with a series of noble-gas filler atoms. Filling with chemically-inert atoms provides an idealised model for isolating the effects of the fillers from the impact of redox changes to the host electronic structure. A range of analysis techniques are proposed to estimate the filler rattling frequencies, to quantify the separate impacts of the filler on the phonon group velocities and lifetimes, and to show how changes to the phonon spectra and interaction strengths lead to suppressed lifetimes. The noble-gas fillers are found to reduce the thermal conductivity of the CoSb3 framework by up to 15 % primarily by suppressing the group velocities of low-lying optic modes. The filler rattling frequencies are determined by a detailed balance of increasing atomic mass and stronger interactions with the framework, and are found to be a good predictor of the impact on the heat transport. Lowering the rattling frequency below ~1.5 THz by selecting heavy fillers that interact weakly with the framework is predicted to lead to a much larger suppression of the thermal transport, by inducing avoided crossings in the acoustic-mode dispersion and facilitating enhanced scattering and a consequent large reduction in phonon lifetimes. Approximate rattling frequencies determined from the harmonic force constants may therefore provide a useful metric for selecting filler atoms to optimise the thermal transport in skutterudites and other cage compounds such as clathrates.

Keywords

Thermal Conductivity
Thermal Conductivity Prediction
Thermoelectric Materials
Skutterudites
Lattice Dynamics
Phonons

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.