Mechanistic Analysis of Light-Driven Overcrowded Alkene-Based Molecular Motors by Multiscale Molecular Simulations

30 December 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We analyze light-driven overcrowded alkene-based molecular motors, an intriguing class of small molecules that have the potential to generate MHz-scale rotation rates. The full rotation process is simulated at multiple scales by combining quantum surface-hopping molecular dynamics (MD) simulations for the photoisomerization step with classical MD simulations for the thermal helix inversion step. A Markov state analysis resolves conformational substates, their interconversion kinetics, and their roles in the motor’s rotation process. Furthermore, motor performance metrics, including rotation rate and maximal power output, are computed to validate computations against experimental measurements and to inform future designs. Lastly, we find that to correctly model these motors, the force field must be optimized by fitting selected parameters to reference quantum mechanical energy surfaces. Overall, our simulations yield encouraging agreement with experimental observables such as rotation rates, and provide mechanistic insights that may help future designs.

Keywords

Molecular Motors
Molecular Dynamics Simulation Study

Supplementary materials

Title
Description
Actions
Title
ESI video files
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.